A Study on the Protection system for DC Distribution Lines

IPCGRID March 29, 2019

Gi-Hyeon Gwona, Chul-Hwan Kimb

a LG Yonam Institute of Technology, Jinju

b Sungkyunkwan University, Suwon, Republic of Korea
Contents

1. Background

2. Protection of DC distribution lines

3. The proposed protection system

4. Simulation results

5. Conclusions

6. Future & related works
1. Background
1.1 Trend of DC distribution system

- **Increase of DC-based applications**

Internet Data Center
- Most loads in IDC
 - DC-based server computer
 - Improve the efficiency with DC distribution system
- DC-based IDCs have already constructed and are operating

DC Home
- Increase of digital loads in home (TV, PC, LED etc.)
- Introduction of the concept “Zero Net Energy”
- To interconnect efficiently & easily with DER and ESS

Dispatchable system
- The system to dispatch DC power to loads
 - To replace conventional one
- Immature protection system in the case of DC-based system
 - To require the development of reliable protection systems
1. Background
1.2 A review on DC distribution system

◆ The limitations of existing researches on protection system for DC distribution lines

A. Rapid fault detection & interruption
 – To protect AC/DC converter (Specifically, the anti-parallel diodes in the AC/DC converter)
 ➔ Possibility to cause **malfunction of protective devices**

B. Protective relay setting in application of non-unit protection methods
 – To be able to protect wide area system
 ➔ **Hard to coordinate** protection system using setting values

C. Protection coordination using communication
 – Effective in monitoring and controlling power system
 ➔ Concern about **poor reliability & financial burden** due to communication errors

The proposed protection system for DC distribution system

➔ **Transient-state based distance** (Impedance) relay system

1. Rapid & Exact protection method
2. Prevention from malfunction
2. Protection of DC distribution lines

2.1 DC fault characteristics

- DC faults in distribution lines
 - DC fault characteristics
 - Three factors to contribute the fault current
 - Damage to anti-parallel diodes

\[
\begin{align*}
 i_{\text{fault}(1)}(t) &= e^{-\left(\frac{R}{L}t\right)} \sqrt{\frac{L}{B^2}} \sin(\omega_d t + \theta) \\
 i_{\text{fault}(2)}(t) &= -L_0 e^{-\left(\frac{R}{L}t\right)} \\
 i_{\text{fault}(3)}(t) &= \frac{V_s}{R} \left(i_{\text{fault}(1)}(t_1) - \frac{V_s}{R} e^{-\left(\frac{R}{L}t\right)} \right)
\end{align*}
\]

\(\star\) Fig. 1. DC fault characteristics in line fault

\[B = \frac{2v_d - R_i I_d}{2L_i} \quad \omega_d = \sqrt{\left(\frac{v_d}{C_{\text{DC-link}}}\right)^{-1} - \left(\frac{R}{2L}\right)^2} \]
2. Protection of DC distribution lines

2.2 Protection requirements

DC fault characteristics
- To require fast interruption
 - Protection of AC/DC converter (Speed)

Protection system
- To identify fault section exactly
 - High reliability of distribution system (Selectivity)

Interconnection with DG
- To detect sympathetic tripping
 - Prevention from malfunction of protective devices (Sensitivity)

The concept of DC protection system

- Trigger to algorithm using current derivative \(\frac{di}{dt}\)
- Fault detection using the proposed distance relay

Limitations of steady state-based method

1. **Additional time** is needed to converge the quantities \((I \ & \ V)\) after the fault occurrence
 - Delay to detect fault
2. Dependent on **load capacity**
 - Decrease of accuracy
3. The proposed protection system
3.1 The principle of the proposed method

The proposed distance relay method

- Transient state-based method is used to detect DC faults rapidly
 - “No zero frequency” during transient state

Step 1. To calculate transient-based impedance using V_L & I_L under fault condition
Step 2. To analyze the magnitude of impedance ($|Z'_{fault}|$) & phase angle (θ_{fault}) using DFT
Step 3. To calculate transient reactance (X'_{fault}) using impedance Triangle
Step 4. To calculate d_X using X'_{fault} per $X'_{total-line}$

\[
Z'_{line} = R_{line} + jX'_{line} = R_{line} + j2\pi f L'_{line} \quad (\therefore f \neq 0) \quad (1)
\]

\[
Z_{fault}' = (V'(+)-V'(-))/I_{line} \quad (2)
\]

\[
d_X = X'_{fault}/X'_{total-line} \times 100(\%)
\]

※ DFT : Discrete Fourier Transform

Fig. 2. Diagram of Impedance Triangle
3. The proposed protection system

3.1 The principle of the proposed method

Prevention of malfunction

Sym pathetic Tripping

- **DC fault occurs in distribution line**
 - Increase of current magnitude on distribution lines interconnected with DG
 - To trip CB on healthy lines → Outage

- **Application of current derivative method**
 - Sensitive to the change of current
 - Sympathetic tripping → Directional relay

Fig. 3. Concept of Sympathetic Tripping

- Pre-fault state
- Post-fault state

- Magnitude: +5.3kA
- Magnitude: -162A
3. The proposed protection system
3.2 The protection algorithm for protecting distribution lines

- The proposed protection algorithm

< Procedure >

① Calculation of current derivative
 - To trigger algorithm
 - To prevent malfunction
 (sympathetic tripping)

② Calculation of transient-based impedance

③ Performance of DFT for fixed time-window

④ Calculation of d_X

⑤ Identification the fault within specific protection area (Zone 1)

Fig. 4. The proposed protection algorithm
4. Simulation results
4.1 Test system & simulation conditions

- Test system modeled using Electromechanical Transients Program (EMTP)
 - 3-division 2-link DC distribution system in radial type
 - To use line parameters of real Korean distribution systems
- Tie switches are normally opened (N/O)

Fig. 5. Test system
4. Simulation results
4.1 Test system & simulation conditions

◆ Simulation conditions

- The parameters for test systems are summarized in Table 1
 - Operation time for Zone 1: The time to require until detecting a DC fault
 - Interruption time of CB: The time to operate CB physically after fault detection

Table 1. Simulation conditions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Input value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution voltage level</td>
<td>1500Vdc</td>
</tr>
<tr>
<td>The number of poles</td>
<td>Uni-pole</td>
</tr>
<tr>
<td>Line length (for each section)</td>
<td>2km</td>
</tr>
<tr>
<td>Line resistance (R_L)</td>
<td>0.164 Ω/km</td>
</tr>
<tr>
<td>Line inductance (X_L)</td>
<td>0.26 mH/km</td>
</tr>
<tr>
<td>Pick-up value for current derivative</td>
<td>(+) 5 kA/μs</td>
</tr>
<tr>
<td>Range of Zone 1</td>
<td>80%</td>
</tr>
<tr>
<td>Operation time for Zone 1 (Fault detection)</td>
<td>1ms</td>
</tr>
<tr>
<td>Interruption time of CB</td>
<td>2ms</td>
</tr>
</tbody>
</table>
4. Simulation results
4.2 Performances of the proposed protection system

1) DC fault within the protective section or outside

- To verify if CBs operate only for the protective section
 - If **high initial current derivative**Rightarrow trigger the algorithm
 ① Case I & II Rightarrow within the protective section (~80%)
 → Fault detection and CB operation
 ② Case III Rightarrow Outside of the protective section
 → No operation of CB

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Case I(10%)</th>
<th>Case II(50%)</th>
<th>Case III(90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z' fault</td>
<td>[Ω]</td>
<td>0.078814</td>
</tr>
<tr>
<td>θ fault [deg]</td>
<td>26.195</td>
<td>36.84</td>
<td>31.887</td>
</tr>
<tr>
<td>X' fault [Ω]</td>
<td>0.03479</td>
<td>0.24239</td>
<td>0.31268</td>
</tr>
<tr>
<td>dx [%] – 100%</td>
<td>12.43</td>
<td>86.57</td>
<td>111.67</td>
</tr>
<tr>
<td>di/dt [kA/μs] – (+)5kA/μs</td>
<td>2485.4</td>
<td>523.28</td>
<td>284.6</td>
</tr>
<tr>
<td>CB operation</td>
<td>Open</td>
<td>Open</td>
<td>Not open</td>
</tr>
</tbody>
</table>
2) Malfunction - Sympathetic tripping

- To verify the performance to prevent sympathetic tripping of CB on healthy line
 - Simulation scenario
 ① Feeder A: DC fault occurrence
 ② Feeder B: Interconnection of DG
 - **Sympathetic tripping**: #5 line protective relay could be tripped
 - To consider *directional function* of current derivative
 - Prevention of sympathetic tripping

#5 line protective relay are not tripped although the current derivative has high magnitude because of its direction

Fig. 6. Waveform of reverse current derivative by interconnection of DG
5. Conclusions

The proposed protection system

- To protect distribution lines in DC distribution systems
 - To propose new distance relay method for DC distribution systems
 - Transient impedance-based method
 - To prevent malfunction by sympathetic tripping
 - Use of sign of current derivative

Simulations & Verification using EMTP

- To model test system based on real data of Korean distribution systems
 - Line parameters, 3-division 2-link configuration

- Simulations for various cases
 - A DC fault occurs at different fault location on distribution lines
 - The situation that sympathetic tripping could occur

- It verifies that the proposed protection system is effective to protect DC faults on distribution lines
6. Future & related works

Future works

- The current study targets radial DC distribution systems under **the condition of N/O state**
 - Future works are to develop **the advanced protection system**
 1. Transient analysis under the condition of **N/C state**
 2. Consideration of the conventional protection system (To check the limitations)
 3. Development of the **advanced protection system under the condition of N/C state**
6. Future & related works

Related works

- We’ve already developed the integrated protection system for DC distribution systems
 - Integrated protection system coordinating both protection systems
 ① Line protection system (discussed in this presentation)
 ② Bus protection system (not included in this presentation)
 ③ Integrated protection system for DC distribution systems
Thank you!