Over-voltages In Inverter-based Systems
i-PCGRID 2019 Workshop

Ali Daneshpooy, PhD, PE
Contents

- Inverter vs. Conventional
- Voltage stresses
- Inverter TOV
- Grounding system
- Analysis methods
- Mitigation
Introduction
Inverter vs. Rotating Machine

- Rotating machines (conventional): Synchronous and Induction (Types 1&2)
 - Rotating Inertia: Synchronous generator demonstrates continuous frequency response.
 - Synchronous voltage cannot jump
 - Inverter is based on PLL and software generated, limited to dc cap voltage
 - Magnetic Inertia: Large short circuit current.
 - Large units are cooled using liquid or gas
 - Synchronous: 8-10 times rated current
 - Induction: 5-6 times the rated current

Note: The above list neither is exclusive nor complete.
Inverter vs. Rotating machine

- **Inverter:**
 - Current limited switching devices
 - GTO, IGBT: Semiconductor wafer is thin and expensive
 - Low thermal inertia
 - Losses: I^2R, Switching losses
 - Maximum current is the design criteria
 - Short circuit current < 1.4 times the rated current (large units 1.1)
 - Six-pulse bridge
 - DC \rightarrow AC

- Note: The above list neither is exclusive nor complete.
Inverter vs. Rotating Machine

- Dominant sources of energization of power systems have been synchronous generators.
 - Represented in power system analysis by a constant ac voltage source in series with a reactance.
- Inverter-based generators, however, generally behave like constant ac current (or power) sources.
 - Current source characteristic has impact on the overvoltages caused by ground faults,

- Assessment of system grounding, as defined in IEEE Std. C62.92, must properly consider behavior if inverter-coupled power sources dominate in a system.
Inverter Voltage Performance

Voltage ride-through (PRC-024-2)

- Above 120% for 0.16 s, ~ 10 cycles
- Inverter does not generate TOV above 120% for more than 10 cycles.
 - Canyon 2 Fire (NERC)
 - 400 MW OV tripping
Overvoltages

- Over-voltage protection is typically provided using Surge Arresters.
 - Surge arresters demonstrate low resistance for voltages above their MCOV and high resistance for voltages below their MCOV.
 - Limits transient overvoltages –not intended to limit temporary overvoltages.
 - Temporary overvoltages are caused by faults, load rejection, line energizing, resonance conditions, ferro-resonance, or by some combination of these factors.

- Note: inverters are harmonic sources, which can contribute to resonance conditions.
Arrester Power Frequency vs. Time

- TOV ratio versus arrester rated voltage drops with time.

- Arrester cannot handle 133% TOV longer than 1 second.

Source: ABB
Ground Fault
Ground Fault Overvoltage

- When a feeder is disconnected, the voltage of feeder collapse due to lack sources.

- Feeders with DER
 - island detection can be up to 2 seconds.

- Transmission-connected can have no load connected.

Source: IEEE
Ground Fault Overvoltage

Study methodologies

- **Symmetrical component**
 - +/−/0 components

- **Phasor study**
 - Ac system analysis

- **Time domain**
 - Inverter control scheme
 - Proprietary models
 - Many manufacturers provide compiled code in PSCAD

Source: EPRI
Ground Fault Overvoltage

- Inverters control scheme identifies and arrest conditions outside predetermined thresholds.
 - Transformer can impact inverter fault identification.

- Symmetrical Components: Inverter (current source mode)
 - Positive sequence: constant current source.
 - Phase inductor can be ignored.
 - Negative sequence: Dependent on control philosophy
 - Can range from phase inductor to infinity.
 - May actively cancel negative sequence currents
 - Zero sequence:
 - w/o neutral connection: Open circuit (more common)
 - w/ neutral connection: Dependent on control philosophy, can range from phase inductor to infinity.
 - Not valid under saturated condition (voltage source at limited output)
Ground Fault Overvoltage

- Sym. Components: Load
 - +/-/0: Shunts
 - Depending on the load type: Commercial, Residential, Motor, Service transformer

- I_1: pre-fault value
- Z_2: Variable, worst case
- Z_{GT}: Typically open circuit

- $Z_{L1}=Z_{L2}=V^2/S_{load}$
- Z_{L0}: Critical & Load dependent
Ground Fault Overvoltage

- How good the system is grounded?
- Effectively grounded:
 - Grounded through a connection of sufficiently low impedance (inherent, intentionally added or both) that a ground fault that may occur cannot build up voltages in excess of limits established for apparatus, circuits, or systems so grounded.
 - Coefficient of Grounding is the ratio of the highest line-ground voltage during a fault to the line-line voltage with fault removed (location).
 - COG does not exceed 80%; i.e. \(0.8\cdot\sqrt{3} = 1.386\).
 - ratio of the zero-sequence reactance to the positive-sequence reactance \((X_0/X_1)\) is positive and < 3, and
 - ratio of the zero-sequence resistance to the positive-sequence reactance \((R_0/X_1)\) is positive and < 1.

Source: IEEE
Non-fault Situations

- High Inverter Output to Load ratios
 - For an isolated DER and load an overvoltage can result if the source power output exceeds the load demand.
 - Load Rejection Overvoltage (LROV)
 - Constant current (source) x Constant impedance (load)
 - Grounding is irrelevant
 - Compounded with ground fault may result in TOV, where the sequence components become unsuitable, and time domain analysis including emtp-type studies will be needed.

Source: IEEE
Ground Fault Overvoltage

Impact of supplemental ground

- Pre-fault

- Post-fault
 - α: ratio of pre-fault generation to connected load
Ground Fault Overvoltage

- Maximum phase voltage vs. pre-fault current
- Excess generation
- Can be compounded with load rejection overvoltage (LROV)
 - Inverter controls only the LROV
- Load pf = 1.0
- GT = Infinite
Ground Fault Overvoltage

- Maximum phase voltage vs. Ratio of grounded load
- Load = Generation
- Impact of load pf on TOV
 - Over-compensation
 - Ungrounded load
 - $Z_2 = 0.1+j1$
 - GT = Infinite

$$\text{Max. Phase voltage (pu)} = 1.39 = 0.8 \times \sqrt{3}$$
Ground Fault Overvoltage

- Impact of inverter negative sequence
- Sensitive for large X_2/R_2
 - Load = Generation
 - Pf = 1.0
 - GT = Infinite

![Graph showing the relationship between Inverter X2 (pu) and Max. Phase voltage (pu)]

- $X_2/R_2 = 10$
- $X_2/R_2 = 1$
- $X_2/R_2 = 0.1$
Ground Fault Overvoltage

- Impact of supplemental ground
- $X_{GT} = 0.6 \text{ pu}$
 - $X/R = 4$
- Z_2 large
 - Active cancelation
- TOV increases with GT
- Depends on pf
Ground Fault Overvoltage

- Impact of supplemental grounding
- Grounding may increase TOV

- Load = Generation
- Pf = 1
Additional Cases
Other Situations

- Constant Power Regulation
 - Fault normally causes a decrease in the voltage.
 - If the source regulates power the current increases to maintain reference power level.
 - Thus it can increase the un-faulted phase voltages.
 - Practically constant power control is implemented as an outer loop, hierarchical, and is sufficiently slow.
 - Thus the source will trip.
 - In case of faster scheme, feed-forward, it can cause voltage rise proportional to the allowable current; i.e. 110-120%

Source: IEEE
Other Situations

- **Load Unbalanced**
 - The simple sequence network is not valid for substantial phase unbalance under islanded mode.
 - Detailed network or time-domain analysis

- **Zero-sequence Isolation**
 - COG = 100%
 - Full neutral shift
 - Load < 125% Inverter P
 - Mitigation needed

\[V = \sqrt{3} I_1 Z_L \]
\[V_2 = 0 \]
\[V_1 = -V_0 \]
Banks of single-phase sources w/o coordinated control

- Single-phase inverters may not be aware of other phases
 - 120° separation not guaranteed
- Load balanced and grounded star connected.
 - No inter-phase coupling
 - No overvoltages during ground fault
Banks of single-phase sources w/o coordinated control

- Single-phase inverters may not be aware of other phases
 - 120° separation not guaranteed
- Load balanced, but not grounded
 - Post-fault the current sources of un-faulted phases will be in-phase
 - Un-faulted phase voltage $I_{\text{source}} \cdot Z_Y = I_{\text{source}} \cdot Z_\Delta / 3$
 - If pre-fault output exceeds $\frac{1}{3}$ of the load, sources reach their output voltage limits
Banks of single-phase sources w/o coordinated control

- Single-phase inverters may not be aware of other phases
 - 120° separation not guaranteed
- Load balanced, but not grounded
 - Post-fault the current sources of un-faulted phases will be in-phase.
 - Un-faulted phase voltage $I_{\text{source}} \cdot Z_Y = I_{\text{source}} \cdot Z_\Delta / 3$
 - If pre-fault output exceeds $\frac{1}{3}$ of the load, sources may reach their output voltage limits
Mitigation measures

- Effective grounding
 - COG is the measure
- Adequate load relative to Inverter Output
 - Supplemental ground may be needed
- Coordinated transfer trip
 - Inverter disconnected before feeder opens
- Fast Inverter overvoltage tripping
 - Inverter may not see TOV on primary side
- Fast islanding detection
- Sacrificial arrester
 - Difficult
Conclusion

- Ground fault on inverter-based systems can cause TOV
- Symmetrical component analysis can provide practical insight
- Sequence impedance of the Inverter and load can impact the resultant TOV
- Time domain simulation, including inverter control scheme, provides better resolution
- Inductive supplemental grounding can increase TOV
- Islanding can compound TOV due to mismatch between DER power to connected load, LROV, worsens under reverse power flow
- Better modelling should be used for planning studies
References

2. IEEE Std. 1313.1, “Standard for Insulation Coordination”
3. UL-1742, “Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources”
5. NERC, “Recommended Practices for Modeling Momentary Cessation”
Questions?