i-PCGRID Workshop 2014

Innovations in Protection & Control for Greater Reliability Infrastructure Development

Smart Power Scheduling: A System of Systems Framework

Yong Fu, Ph.D.
Assistant Professor
Electrical and Computer Engineering
Mississippi State University

March 26, 2014 San Francisco

Power System Scheduling

■ Motivation

- Provide a more accurate and detailed understanding of power grid, which is "making the grid as good as possible"
- Provide a secure and economic power system operation

■ Benefits

- To reduce the overall cost of delivering power to end users
- To get more out of the existing infrastructure and thus defer investments in new facilities
- To improve reliable delivery of power to end users never fails to customers
- To reduce emissions

Outcomes

- Operation of generation, transmission and distribution systems
- Incorporation of distributed energy resources and energy storages
- > Load side management considering demand response
- Cooperation of multiple energy infrastructures
- >More ...

Challenges & Opportunities

☐ Conventional Power Systems

- ➤ Monopolistic systems <u>Vertically Integrated Utility</u>
- Lack of competition and collaboration
- ➤ Scheduling of central power generators
- ➤ Passive distribution grids, and unidirectional power flow
- The operator has all data and information
- ➤ Centralized decision

☐ Modern Power Systems

- ➤ Many individual entities <u>Restructuring Power System</u>
- Each entity might have its own operating policies and rules.
- ➤ Competition and collaboration to maximize the benefit
- ➤ Active distribution grid, and bidirectional power flow
- ➤ Scheduling among perhaps millions of distributed generators
- > Operational confidence at high levels of renewable energy resources
- ➤ Data and information of the entities are usually commercially sensitive
- ➤ Decentralized/Distributed decision

A System of Systems Framework

- System of Systems (SoS): The entities are independent systems that can <u>function</u> independently with their own operation and control regulations, the competition and collaboration relationship among them can be represented by the concept of system of systems.
- > Systems could be different sizes at different levels, have different functions, and even follows different physical laws
- Each system, as a distributed and independent decision-making entity, implements dual functionalities:
 - System's <u>internal management</u>: effectively manages heterogeneous electric power components in its individual area
 - System's <u>external interaction</u>: successfully interacts with inner and/or outer systems.

Attributes of SoS

A Typical Power System Scheduling Problem

Security Constrained Unit Commitment

- Objective Function Minimize
 - Generation and startup/shutdown costs
- □ Generating Unit Constraints
 - Generation capacity
 - Minimum ON/OFF time limits
 - Ramping UP/DOWN limits
 - Must-on and area protection constraints
 - Forbidden operating region of generating units

- Power balance
- System reserve requirements
- Power flow equations
- > Transmission flow and bus voltage limits
- Limits on control variables
- Limits on corrective controls for contingencies

Large Scale, Non-Convex, Mixed Integer Nonlinear Problem

A Distributed Solution to Power System Scheduling

- Large Size: Physically and Mathematically
- Distributed Structure: Geographically and Managerially
- Decision Quality: Fast and Accurate
- Information Privacy: Restricted and Shared

Multiple-Area and Multiple-Levels Scheduling

- Target variables (t): sending from Area/System j toward Area/System k
- Response variables (r): sending from Area/System k toward Area/System j

Min
$$f_j(\mathbf{x}, t, r^*) + \pi(t, r^*)$$

s.t. $\mathbf{g}_j(\mathbf{x}, t, r^*) \le 0$
 $\mathbf{h}_j(\mathbf{x}, t, r^*) = 0$

Min
$$f_k(\mathbf{y}, t^*, r) + \pi(t^*, r)$$

s.t. $\mathbf{g}_k(\mathbf{y}, t^*, r) \leq 0$
 $\mathbf{h}_k(\mathbf{y}, t^*, r) = 0$

t=r?

Modeling Shared Variables

Solutions: Sequential and Parallel

Sequential

For each subsystem:

Min
$$f_j(\tilde{\mathbf{x}}_j)$$

$$+ \sum_{k \in \text{neighbor}} (\boldsymbol{\alpha}_{jk} (\boldsymbol{t}_{jk} - \boldsymbol{r}_{kj}) + \left\| \boldsymbol{\beta}_{jk} \circ (\boldsymbol{t}_{jk} - \boldsymbol{r}_{kj}) \right\|_2^2)$$

Parallel

For master problem: Minimize Interaction Errors

$$Min \sum_{j} \left\{ \alpha_{jm} (\hat{t}_{mj} - r_{jm}^*) + \left\| \beta_{jm} \circ (\hat{t}_{mj} - r_{jm}^*) \right\|_{2}^{2} \right\}$$

For each subsystem:

Min
$$f_j(\widetilde{\mathbf{x}}_j) + \alpha_{jm}(\hat{t}_{mj}^* - r_{jm}) + \|\beta_{jm} \circ (\hat{t}_{mj}^* - r_{jm})\|_2^2$$

IEEE 48-bus System

System Information:

48 buses

71 branches

34 loads

20 thermal units

Items	C-SCUC	D-SCUC
Total operating cost (\$)	\$766,400	\$766,490

Units											Ηοι	urs	(1-	24	.)									
1-3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4-6	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10-13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14-16	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

IEEE 48-bus System

IEEE118-bus System

System Information:

118 buses

186 branches

91 loads

54 thermal units

C-SCUC	D-SCUC							
C-SCOC	Case 1	Case 2						
\$1,339,000	\$1,342,900	\$1,344,000						
69 sec.	98 sec.	22 sec.						

Conclusions

- ☐ A System of Systems concept can meet the operational architecture of modern power systems.
- ☐ A distributed decision-making tool is effective for a collaborative and cooperative operation of multiple systems.
- □ Notice that there is no general rule to partition subproblems for specific power systems. Thus, **TWO** generic guidelines are suggested below for the application of the proposed distributed solution:
 - Each subproblem in the distributed solution should be scalable and tractable.
 - ➤ The calculation efforts among subproblems should be balanced.
- ☐ The ideas can be applied to various power system applications, such as <u>Planning</u>, <u>Operation</u>, <u>Control</u>, <u>Protection</u>, and even <u>Infrastructure Interdependency</u>.

Thanks!

fu@ece.msstate.edu