

Proudly Operated by Battelle Since 1965

North American SynchroPhasor Initiative (NASPI) Overview

Data Exchange Panel iPCGRID 2013 hosted by Pacific Gas & Electric

March 28, 2013

Jeff Dagle, PE Chief Electrical Engineer Advanced Power and Energy Systems Pacific Northwest National Laboratory (509) 375-3629 jeff.dagle@pnnl.gov

NASPI Organization

Recovery Act Grants Have Accelerated Synchrophasor Deployment

Proudly Operated by Battelle Since 1965

ARRA Smart Grid Investment Grant Electric Transmission Systems Projects

American Transmission Company, LLC (PMU)	\$2.7*
American Transmission Company, LLC (SCADA)	22.9
Duke Energy Carolinas, LLC	7.8
Entergy Services, Inc.	9.2
Midwest Energy, Inc	1.4
Midwest ISO, Inc – 15 trans owner partners	34.5
ISO New England, Inc – 7	18.1
New York ISO, Inc - 8	75.7
PJM Interconnection, LLC – 12	27.8
Western Electricity Coordinating Council – 18	107.8
* Total Project Cost	

Synchrophasor Value Proposition

Proudly Operated by Battelle Since 1965

Real-time applications

- Wide area visualization and situational awareness
- State estimation
- Voltage monitoring
- Frequency monitoring and management
- Oscillation detection and monitoring
- Event detection
- Alarming and limits
- Stability monitoring (local and wide area)
- Renewables integration
- Congestion management
- Automated controls
- Islanding detection and restoration
- Off-line applications
 - Post-event analysis
 - Model validation
 - Baseline and pattern recognition

Technology Maturation Process

- Sharing users' and vendors' success stories and high-value applications
- Accelerating development of technical interoperability standards
- Focusing and facilitating baselining and pattern recognition research (e.g., oscillation detection) and other R&D
- Early identification of project implementation challenges and community work to develop and share solutions
 - Develop and test PMU device specifications and interoperability
 - Communications network design
 - PMU placement
 - End-to-end data flow and quality
 - Developing requirements for "production-grade" systems
 - Building key software infrastructure
 - Enhance applications value and operator and user training
 - On the horizon more technical standards; cyber-security and GPS

Proudly Operated by Battelle Since 1965

The NASPInet Vision A Distributed Network for Data Exchange and Sharing

Security of Synchrophasors

- Synchrophasors are becoming part of the bulk electric system and will require physical and cyber security
 - But these systems shouldn't be treated any differently than other forms of measurement and control telemetry
- Synchrophasor systems will coexist with other bulk electricity system (BES) cyber infrastructure and will have similar dependencies on common communications and network elements
- System designers and owners are leveraging emerging cyber-security standards and technologies
- Currently available phasor applications require further data analysis, software refinement and operational validation to be fully effective; many are in advanced development and testing and are not in full operational use

Therefore, many of these systems are not currently considered critical cyber assets

- Due to nature of continuous, high-volume data flows, new technology will likely be required for measurement, communications, and applications
 - Technology anticipated to undergo rapid change and refinement over the next several years that is being addressed by ongoing research programs

Technology Deployment Challenges

- Application maturity
 - Critical for operator acceptance, and maintaining support across the organizational enterprise
- Established knowledge base (training and adoption issues)
- Interoperability
- Cyber security
- Reliability/robustness of the measurement technology and supporting infrastructure
- Data sharing challenges
- Governance issues associated with shared data networks
- Data quality (including networks)
- Evolving data exchange and measurement technology standards
- Demonstrating the value proposition (including regulatory acceptance of the technology)
- Continued industry leadership and support to achieve interconnection-wide systems

- DOE has played a key catalyst role in the development and implementation of synchrophasor technology
- DOE and NERC will continue to support industry efforts to promote and enable widespread adoption of advanced monitoring technologies to ensure grid reliability
- DOE will actively support needed R&D to ensure that the full value of a North American phasor network will be realized
 - *Hardware* measurement technologies
 - Network data access and security
 - Software Applications focus on reliability management objectives
 - **Demonstrations** regional in scope
- Recovery Act is enabling unprecedented advancement of synchrophasor technology deployment

Proudly Operated by Battelle Since 1965

NASPI North American SynchroPhasor Initiative

http://www.naspi.org/